此外格式结构信息具有明显的语义信息,但基于格式结构信息的检测方法没有提取决定软件行为的代码节和数据节信息作为特征。某一种类型的特征都从不同的视角反映刻画了可执行文件的一些性质,字节码n-grams、dll和api信息、格式结构信息都部分捕捉到了恶意软件和良性软件间的可区分信息,但都存在着一定的局限性,不能充分、综合、整体的表示可执行文件的本质,使得检测结果准确率不高、可靠性低、泛化性和鲁棒性不佳。此外,恶意软件通常伪造出和良性软件相似的特征,逃避反**软件的检测。技术实现要素:本发明实施例的目的在于提供一种基于多模态深度学习的恶意软件检测方法,以解决现有采用二进制可执行文件的单一特征类型进行恶意软件检测的检测方法检测准确率不高、检测可靠性低、泛化性和鲁棒性不佳的问题,以及其难以检测出伪造良性软件特征的恶意软件的问题。本发明实施例所采用的技术方案是,基于多模态深度学习的恶意软件检测方法,按照以下步骤进行:步骤s1、提取软件样本的二进制可执行文件的dll和api信息、pe格式结构信息以及字节码n-grams的特征表示,生成软件样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图。艾策检测团队采用多模态传感器融合技术,构建智能工厂设备状态健康监测体系。太原软件评测实验室
本书内容充实、实用性强,可作为高职高专院校计算机软件软件测试技术课程的教材,也可作为有关软件测试的培训教材,对从事软件测试实际工作的相关技术人员也具有一定的参考价值。目录前言第1章软件测试基本知识第2章测试计划第3章测试设计和开发第4章执行测试第5章测试技术与应用第6章软件测试工具第7章测试文档实例附录IEEE模板参考文献软件测试技术图书3基本信息书号:软件测试技术7-113-07054作者:李庆义定价:出版日期:套系名称:21世纪高校计算机应用技术系列规划教材出版单位:**铁道出版社内容简介本书主要介绍软件适用测试技术。内容分为三部分,***部分为概念基础、测试理论的背景及发展,简要地分析了当前测试技术的现状;第二部分介绍软件测试的程序分析技术、测试技术,软件测试的方法和策略,分析了软件业在测试方面的研究成果,并总结了测试的基本原则和一些好的实践经验;第三部分介绍了两种测试工具软件——基于Windows的WinRunner和服务器负载测试软件WAS。本书结合实际,从一些具体的实例出发,介绍软件测试的一些基本概念和方法,分析出软件测试的基本理论知识,适用性比较强。洛阳第三方软件测评实验室功能完整性测试发现3项宣传功能未完全实现。
当我们拿到一份第三方软件测试报告的时候,我们可能会好奇第三方软件检测机构是如何定义一份第三方软件测试报告的费用呢,为何价格会存在一些差异,如何找到高性价比的第三方软件测试机构来出具第三方软件检测报告呢。我们可以从以下三个方面着手讨论关于软件检测机构的第三方软件测试报告费用的一些问题,对大家在选择适合价格的软件检测机构,出具高性价比的软件检测报告有一定的帮助和参考意义。1、首先,软件检测机构大小的关系,从资质上来说,软件检测机构的规模大小和资质的有效性是没有任何关系的。可能小型的软件检测机构,员工人数规模会小一点,但是出具的CMA或者CNAS第三方软件检测报告和大型机构的效力是没有区别的。但是,小机构在人员数量,运营成本都会成本比较低,在这里其实是可以降低一份第三方软件测试报告的部分费用,所以反过来说,小型软件检测机构的价格可能更加具有竞争力。2、软件检测流程的关系,为何流程会和第三方软件测试的费用有关系呢。因为,一个机构的软件检测流程如果是高效率流转,那么在同等时间内,软件检测机构可以更高效的对软件测试报告进行产出,相对来说,时间成本就会降低,提高测试报告的出具效率。
图2是后端融合方法的流程图。图3是中间融合方法的流程图。图4是前端融合模型的架构图。图5是前端融合模型的准确率变化曲线图。图6是前端融合模型的对数损失变化曲线图。图7是前端融合模型的检测混淆矩阵示意图。图8是规范化前端融合模型的检测混淆矩阵示意图。图9是前端融合模型的roc曲线图。图10是后端融合模型的架构图。图11是后端融合模型的准确率变化曲线图。图12是后端融合模型的对数损失变化曲线图。图13是后端融合模型的检测混淆矩阵示意图。图14是规范化后端融合模型的检测混淆矩阵示意图。图15是后端融合模型的roc曲线图。图16是中间融合模型的架构图。图17是中间融合模型的准确率变化曲线图。图18是中间融合模型的对数损失变化曲线图。图19是中间融合模型的检测混淆矩阵示意图。图20是规范化中间融合模型的检测混淆矩阵示意图。图21是中间融合模型的roc曲线图。具体实施方式下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例**是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。网络安全新时代:深圳艾策的防御策略解析。
且4个隐含层中间间隔设置有dropout层。用于输入合并抽取的高等特征表示的深度神经网络包含2个隐含层,其***个隐含层的神经元个数是64,第二个神经元的隐含层个数是10,且2个隐含层中间设置有dropout层。且所有dropout层的dropout率等于。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,中间融合模型的准确率变化曲线如图17所示,模型的对数损失变化曲线如图18所示。从图17和图18可以看出,当epoch值从0增加到20过程中,模型的训练准确率和验证准确率快速提高,模型的训练对数损失和验证对数损失快速减少;当epoch值从30到50的过程中,中间融合模型的训练准确率和验证准确率基本保持不变,训练对数损失缓慢下降;综合分析图17和图18的准确率和对数损失变化曲线,选取epoch的较优值为30。确定模型的训练迭代数为30后,进行了10折交叉验证实验。中间融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图19所示,规范化后的混淆矩阵如图20所示。中间融合模型的roc曲线如图21所示,auc值为,已经非常接近auc的**优值1。(7)实验结果比对为了综合评估本实施例提出融合方案的综合性能。专业机构认证该程序内存管理效率优于行业平均水平23%。北京第三方软件检测公司
可靠性评估连续运行72小时出现2次非致命错误。太原软件评测实验室
optimizer)采用的是adagrad,batch_size是40。深度神经网络模型训练基本都是基于梯度下降的,寻找函数值下降速度**快的方向,沿着下降方向迭代,迅速到达局部**优解的过程就是梯度下降的过程。使用训练集中的全部样本训练一次就是一个epoch,整个训练集被使用的总次数就是epoch的值。epoch值的变化会影响深度神经网络的权重值的更新次数。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,前端融合模型的准确率变化曲线如图5所示,模型的对数损失变化曲线如图6所示。从图5和图6可以看出,当epoch值从0增加到5过程中,模型的验证准确率和验证对数损失有一定程度的波动;当epoch值从5到50的过程中,前端融合模型的训练准确率和验证准确率基本不变,训练和验证对数损失基本不变;综合分析图5和图6的准确率和对数损失变化曲线,选取epoch的较优值为30。确定模型的训练迭代数为30后,进行了10折交叉验证实验。前端融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图7所示,规范化后的混淆矩阵如图8所示。前端融合模型的roc曲线如图9所示,该曲线反映的是随着检测阈值变化下检测率与误报率之间的关系曲线。太原软件评测实验室
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。